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Abstract. We consider a class of geometrically frustrated Heisenberg spin systems
which admit exact ground states. The systems consist of suitably coupled
antiferromagnetic spin trimers with integer spin quantum numbers s and their ground
state Φ will be the product state of the local singlet ground states of the trimers. We
provide linear equations for the inter-trimer coupling constants which are equivalent
to Φ being an eigenstate of the corresponding Heisenberg Hamiltonian and sufficient
conditions for Φ being a ground state. The classical case s → ∞ can be completely
analyzed. For the quantum case we consider a couple of examples, where the critical
values of the inter-trimer couplings are numerically determined. These examples
include chains of corner sharing tetrahedra as well as certain spin tubes. Φ is proven
to be gapped in the case of trimer chains. This follows from a more general theorem
on quantum chains with product ground states.
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1. Introduction

The effects of frustration in Heisenberg magnets have attracted much interest over the

past few decades [1, 2]. Geometrically frustrated quantum antiferromagnets (AF) are an

excellent play-ground for studying novel quantum many-body phenomena. We mention

quantum spin-liquid phases, valence-bond crystal phases, order-by-disorder phenomena,

lattice instabilities to name just a few.

Moreover, in recent years there has been remarkable progress in synthesizing mag-

netic materials [3]. Even exotic structures such as the star [4] or the maple-leaf lattices

[5] have been synthesized. Hence, the investigation of exotic lattice structures being on

the first glance purely academic might become relevant for experimental studies.

The theoretical investigation of frustration effects in quantum spin anti-

ferromagnets usually meets new difficulties; e. g. the quantum Monte Carlo method

suffers from the sign problem for frustrated systems. Exact statements for interacting

quantum-many body systems are rare and, therefore, new rigorous results are of con-

siderable interest to improve their understanding. Moreover, solvable models may serve

as test grounds for approximate methods.

Starting with the seminal papers of Majumdar-Ghosh [6] and Shastry-Sutherland

[7], a famous class of spin systems with exact ground states has thoroughly been inves-

tigated, see, for example, [8]. These systems consist of N suitably coupled AF dimers

such that the product state of the local S = 0 dimer ground states remains the ground

state of the total system. For this it is necessary that the coupling constants between

the dimers satisfy certain linear equations [9]. A generalization to chains with trimerized

ground states using SU(3) spins and bilinear-biquadratic Hamiltonians has recently been

published [10]. Another approach using matrix product states as exact ground states

[11] has also been mainly applied to anisotropic spin systems.

In this paper we will rather consider isotropic (Heisenberg) spin systems and ex-

tend the basic idea underlying the Majumdar-Ghosh-Shastry-Sutherland ground states

to systems with AF trimers as building blocks. These systems will be geometrically frus-

trated. If the individual spin quantum number s is integer, the ground state of a uniform

(or almost uniform) AF trimer will be again a non-degenerate singlet state, i. e. having

S = 0. The product state Φ of these local ground states will be an eigenstate of the

Heisenberg Hamiltonian of N trimers if and only if the coupling constants satisfy cer-

tain linear constraints completely analogous to the dimer case. Moreover, if the coupling

between the dimers is not too strong, Φ will be the ground state of the total system,

called the trimerized ground state (TGS). Of course, the question arises what precisely

is meant by ”not too strong”? In general, the precise domain of systems admitting TGS

can only be numerically investigated for given examples and lattice structures. In a
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sense, we thus invert the usual strategy to numerically find ground states for given spin

systems. We define a certain state Φ and numerically calculate the coupling constants

for systems which have Φ as their ground state. However, we have also derived some

general rigorous statements on systems with trimerized ground states. These statements

mainly concern trimerized ground states in the classical limit s →∞, which can be com-

pletely understood, and some sufficient conditions for trimerized ground states in the

quantum case. Moreover, we prove that in the case of trimer chains with trimerized

ground state, Φ will be gapped for an extended domain of coupling constants. We stress

that our investigation is restricted to the case of integer s, since for s being half integer

the ground state of the AF trimer will be degenerate, see, e. g. [12]. We mention that

trimerized states of the kind explained above have also been considered as approximate

ground states of certain modified 2D kagome lattices [13].

The paper is organized as follows. In section 2 we summarize the basic definitions

and main results. Section 3 is devoted to a couple of examples, starting from a single

trimer, followed by a pair of trimers and then passing to 1-dimensional chains of trimers.

The latter examples cover systems like chains of corner-sharing tetrahedra [14] and spin

tubes [15], which currently attract a lot of attention in the literature, albeit, as a rule,

not under the aspect of exact ground states. The study of the examples led us to

some conjectures about the domain of the coupling constants for systems admitting

trimerized ground states and its dependence on s and N . In order to clearly distinguish

these conjectures from the mentioned rigorous statements we have presented the latter

in a separate section 4. We decided to give detailed proofs of these statements only in

those cases where they markedly differ from the analogous proofs for the dimer case in

[9].

2. Basic definitions and summary of main results

We consider systems of 3N spins with one and the same individual integer spin quantum

number s = 1, 2, 3, . . . which are grouped into N fixed triples (“trimers”). To indicate

this grouping the spins will be denoted by indices µ = (i, δ) where i = 1, . . . , N is the

trimer index and δ = 0, 1, 2 distinguishes between the three spins belonging to the same

trimer. Further we consider Heisenberg Hamiltonians

H∼ (J) =
∑
µν

Jµνs∼µ · s∼ν (1)

=
∑
i,j

∑

δ,ε

Jiδ, jε s∼iδ · s∼jε , (2)

where s∼µ = (s∼
(1)
µ , s∼

(2)
µ , s∼

(3)
µ ) denotes the µ-th spin observable and J the 3N × 3N -matrix

of real exchange parameters or coupling constants Jµν satifying

Jµµ = 0, Jµν = Jνµ for all µ, ν = 1, . . . , 3N . (3)
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All operators act on a (2s + 1)3N -dimensional Hilbert space H =
⊗3N

µ=1Hµ. If the spin

quantum number s is fixed, we may identify a spin system with its matrix J. Note that

due to the matrix notation each scalar product s∼µ · s∼ν occurs twice in the Hamiltonian

(1). In order to comply with the usual notation we have therefore introduced the factor
1
2

in some examples of section 3.

For any trimer with index i let [i0, i1, i2] denote the ground state of the AF trimer

H∼ 0 = λi

∑
δ,ε s∼iδ · s∼iε, λi > 0 which is unique up to a phase factor. If the trimer index i

is irrelevant, it will be simply denoted by [0, 1, 2]. For general s this state can be written

in terms of the Wigner-3j-symbol as

[0, 1, 2] =
s∑

m0,m1=−s

(
s s s

m0 m1 −m0 −m1

)
|m0,m1,−m0 −m1〉 , (4)

using the eigenbasis |m〉, m = −s, . . . , s of s∼
(3)
µ and the corresponding product bases.

The state [i0, i1, i2] will remain the ground state of the trimer i even when its Hamil-

tonian is suitably disturbed, see section 3.1. Let Cs
i denote the set of all (Ji0, Ji1, Ji2)

where this is the case.

The ground state of a system of N unconnected AF trimers satisfying (Ji0, Ji1, Ji2) ∈
Cs

i for i = 1, . . . , N is the product state

Φs ≡
N⊗

i=1

[i0, i1, i2] , (5)

called the trimerized state; it has the total spin quantum number S = 0. A system J is

said to admit trimerized ground states (TGS), or to have the TGS property, iff Φs is a

ground state of H∼ (J), i. e. iff

〈Φs|H∼ (J)Φs〉 ≤ 〈Ψ|H∼ (J)Ψ〉 (6)

for all Ψ ∈ H with ||Ψ|| = 1. Let Cs
Φ denote the set of all spin systems J with the TGS

property. If the quantum number s is understood, we suppress it and write simply Φ

and CΦ.

For J ∈ CΦ it is necessary that Φ will be an eigenstate of H∼ (J). This turns out to

be true if and only if the inter-trimer coupling constants fulfil the relations

Ji0,j0 + Ji1,j1 = Ji0,j1 + Ji1,j0 (7)

Ji0,j0 + Ji1,j2 = Ji0,j2 + Ji1,j0 (8)

Ji0,j0 + Ji2,j1 = Ji0,j1 + Ji2,j0 (9)

Ji0,j0 + Ji2,j2 = Ji0,j2 + Ji2,j0 (10)

for all 1 ≤ i < j ≤ N . The corresponding eigenvalue

E = −s(s + 1)

(
N∑

i=1

Ji0,i1 + Ji0,i2 + Ji1,i2

)
. (11)
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is independent of the inter-trimer coupling. Since (7)-(10) is a system of four independent

linear equations, the set of all real, symmetric 3N ×3N -matrices satisfying (7)-(10) and

Jµµ = 0 for all µ = 1, . . . , 3N will be a linear space of dimension 3N +5
(

N
2

)
= N

2
(5N+1),

denoted by JΦ. The set CΦ of TGS systems will form a convex cone embedded in the

linear space JΦ, since the condition (6) is invariant under positive linear combinations

of J’s , see also [9]. At the boundary of CΦ, the trimerized ground state Φ will become

degenerate, i. e. there will exist “competing” ground states which have a lower energy

than (11) if J crosses the boundary of CΦ. Sometimes we will also use the symbol
◦
CΦ

in order to denote the open convex cone of spin systems J where Φ is a non-degenerate

ground state.

The conditions (7)-(10) still include interesting spin structures such as corner-

sharing tetrahedra and spin tubes to be considered in section 3.3. In some of these

chains additional symmetries arise which allow the description by an equivalent ladder

model of composite spins, see 3.3.1 and 3.3.2. However, the TGS property is indepen-

dent of this additional symmetry as shown by the example of a certain spin tube in

section 3.3.2.

It is clear that the choice of dimensionless numbers for the Jµν in the examples

implies the introduction of appropriate units for energy and temperature in order to

apply the Heisenberg model to real systems. In this sense, temperature becomes a di-

mensionless quantity in the thermodynamic calculations of section 3.2 which illustrate

some physical consequences of the existence of TGS ground states. In most cases the

domain of TGS systems, i. e. the shape of the cone Cs
Φ can only be determined numer-

ically. Exceptions are the single trimer case where Cs
Φ can be calculated analytically,

see section 3.1, and the two-trimer case with s = 1, see section 3.2. In all examples

which are considered in section 3 there is some evidence that these cones shrink with

increasing s. Note that in the classical limit C∞Φ will be degenerate, since the necessary

conditions for the Jµν are stronger in this case, see section 4.2. In contrast, for the chains

of trimers considered in section 3.3, the dependence of Cs
Φ on N is only weak. More-

over, we found that Cs
Φ is slightly expanding if N grows. This is an indication that the

limit of Cs
Φ for N →∞ is “non-degenerate”, in the sense that it does not converge to a

lower-dimensional domain and that the trimerized ground state is gapped. We will rigor-

ously prove these properties in section 4.4. Our class of models thus supports Haldane’s

conjecture [16] that integer spin chains possess a unique ground state and an energy

gap between the ground state and the excited states. The famous AKLT model [17] is

also an s = 1 spin chain with a unique gapped ground state but its anti-ferromagnetic

Heisenberg Hamiltonian is modified by a biquadratic term. For the s = 1/2 Heisenberg

spin chain the absence of an energy gap has been proven in the ‘Lieb-Schultz-Mattis

theorem’ [18].
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In the classical case s → ∞ an analogous definition of TGS systems is possible,

see section 4. In this case Φ consists of all spin configurations with a mutual angle

of 120◦ between spin vectors of the same trimer. For classical TGS systems the inter-

trimer coupling must be necessarily uniform and hence can be described by a symmetric

N ×N− matrix G. We have the result that a classical system has the TGS property if

and only if G is positive semi-definite. Thus the classical case is completely understood.

3. Examples

For readers less interested in the mathematical details of our rigorous analysis that

will be presented in more detail below in section 4 we first present some examples. In

particular, the general statements listed above can be used to discuss certain specific

chain-like models, such as chains of corner sharing tetrahedra as well as various spin

tubes. We begin with some more elementary examples.

3.1. One Trimer

We consider three spins with integer spin quantum number s and Heisenberg

Hamiltonian

H∼ =
3∑

µ,ν=1

Jµνs∼µ · s∼ν = J1s∼2 · s∼3 + J2s∼3 · s∼1 + J3s∼1 · s∼2 , (12)

where we have relabeled the coupling constants in order to keep the following formulas

readable. Let [1, 2, 3] denote the unique state with vanishing total spin, S = 0. It is an

eigenstate of (12), since the eigenspaces of S∼
2 are invariant under H∼ . For certain values

of J1, J2, J3, [1, 2, 3] is even the ground state of H∼ , e. g. for J1 = J2 = J3 = 1. These

values of J1, J2, J3 form an closed convex cone Cs in the 3-dimensional (J1, J2, J3)-space.

At the boundary of Cs the ground state of H∼ becomes degenerate. Recall that
◦
Cs denotes

the open subset of Cs where [1, 2, 3] is the non-degenerate ground state. The form of

the cone can be calculated using computer-algebraic software and the well-established

assumption that the competing state has the quantum number S = 1. It is given by the

following inequalities

(J1, J2, J3) ∈
◦
Cs ⇔

1

2
s(s + 1)(J1 + J2 + J3)(J1J2 + J2J3 + J3J1) < (1 +

9

2
s(s + 1))J1J2J3

and J1, J2, J3 > 0 . (13)

The intersection of Cs, s = 1, . . . , 10 with the plane J1 +J2 +J3 = 3 is depicted in figure

1. By Taylor expansion of (13) one can show that, for increasing values of s, the cones

Cs approach a circular form centered at the half line J1 = J2 = J3 > 0 with a cone angle

of

ϑ = arctan

√
2

3(1 + 3s(s + 1))
. (14)
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J1=3,J2=J3=0 J2=3,J1=J3=0

J3=3,J1=J2=0

Figure 1. Representation of the neighborhood of J1 = J2 = J3 = 1 in which the state
[1, 2, 3] remains the ground state of (12) where s = 1, . . . , 10 starting with the outermost
curve. The values of J1, J2, J3 are restricted to the plane J1 + J2 + J3 = 3. The
curves have been calculated according to (13) and have been confirmed numerically for
s = 1, . . . , 5. The point at the center of the figure with coordinates (1, 1, 1) corresponds
to the classical limit.

Hence the cones Cs will shrink and approach their classical limit J1 = J2 = J3 > 0 for

s →∞, see section 4.

3.2. Two Trimers

Next we consider two trimers, i. e. six spins grouped into two triples with indices (1, 2, 3)

and (4, 5, 6) and Heisenberg Hamiltonian

H∼ =
6∑

µ,ν=1

Jµνs∼µ · s∼ν . (15)

We ask whether Φ ≡ [1, 2, 3]⊗ [4, 5, 6] will be a ground state of H∼ . Φ is then called the

trimerized ground state. First, we note that Φ need not be an eigenstate of H∼ unless

the Jµν do not satisfy equations (7)-(10). These equations will be derived in section 4.

They can be expressed in the following way: Let (X, Y ) be a pair of spins belonging to

the first trimer and (x, y) another pair belonging to the second one. Then the two sums

JXx + JY y and JXy + JY x must be equal. This is a kind of balance condition completely

analogous to the corresponding condition in the case of two dimers, see [9]. It is satisfied
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for all combinations of spin pairs if and only if Φ is an eigenstate of H. Actually, only

four conditions of the above form have to be postulated, since the other will follow then,

see section 4. The coupling constants within the same trimer are not constrained, hence

we are left with a 3 + 3 + 5 = 11-dimensional linear space of independent coupling

constants Jµν , which will be called J . It is independent of s.

Again, the linear space J will contain a closed convex cone Cs of values Jµν such

that Φ will be a ground state of the corresponding Hamiltonian (15). The example

of two unconnected trimers with the respective non-degenerate ground states [1, 2, 3]

and [4, 5, 6] shows that Cs is not empty. But it seems hopeless to analytically calculate

Cs except for s = 1. Thus we will here present some mixture of numerical, computer-

algebraic and semi-analytical results. Neglecting a positive overall factor in (15) we still

have a 10-dimensional manifold of possible Jµν-values which is difficult to visualize. We

will hence confine ourselves to some two-dimensional subspace of J defined by (see also

figure 2)

J12 = J13 = J23 = J45 = J46 = J56 =
1

2
and (16)

J14 = − J26 = −J36 =
a

2
, J15 =

b

2
, J25 = J35 =

b− a

2
, (17)

where obviously the second equation fulfils the general conditions (7)-(10). Note that

the coupling strength between spins indicated in figure 2 equals twice the values of the

Jµν due to our definition of the Hamiltonian (15).

The set T s of points with coordinates (a, b) such that Φ will be a ground state of the

corresponding Hamiltonian is again a convex set. It is represented in figure 5 for the

values s = 1, 2, 3, 4, 5. The case s = 1 is just within the practical limits of computer-

algebraic methods. The boundary of T 1 consists of pieces of 6 intersecting curves given

by equations of the form qij(a, b) = 0 where the qij are polynomials in the variables a, b

with integer coefficients. The three simplest cases are

q00 = 4− 4a− a2 + a3 − 4b + 5ab− a2b− b2 − ab2 + b3 , (18)

q02 = 8 + 28a + 28a2 + 8a3 − 8b− 14ab− 5a2b− 2b2 − 5ab2 + 2b3 , (19)

and

q10 = 128− 128a− 74a2 + 85a3 − 2a4 − 11a5 + 2a6 − 128b + 226ab− 29a2b

− 68a3b + 25a4b− 2a5b− 74b2 − 29ab2 + 66a2b2 − 8a3b2 − 2a4b2 + 85b3

− 68ab3 − 8a2b3 + 4a3b3 − 2b4 + 25ab4 − 2a2b4 − 11b5 − 2ab5 + 2b6.

(20)

The other polynomials are too complicated to be reproduced here. Note that the Hamil-

tonian (15) with the coupling constants (16, 17) commutes with S∼
2 and S∼

2
23. Correspond-

ingly, the indices i, j of the polynomials qij refer to the quantum numbers S ≡ i and
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1

2

3

4

5

6

1

1

-a

b

b-a

a

Figure 2. Two coupled trimers satisfying (16),(17). The intra-trimer coupling (black
lines) is set to one. The inter trimer coupling strengths are a (red line), −a (green
line), b (blue line) and b− a (magenta line).

S23 ≡ j of the corresponding competing states, see figure 3.

In order to illustrate the physical implications of the presence of TGS ground states

for a relatively simple example we have calculated the (dimensionless) zero-field mag-

netic susceptibility χ = 〈∂M
∂B
〉
∣∣
B=0

= 1
T
〈M2〉 as a function of temperature T for coupling

constants along the line b = 0.4 a and s = 1, see figure 4. This line crosses the boundary

of the TGS domain T 1 at the value a1 = 0.869506904299778. For a < a1 the ground

state Φ has S = 0; for a > a1 the competing ground states have S = 1. Hence there

is a transition from χ(T ) vanishing exponentially at T = 0 to divergence of the form

χ(T ) ∼ 2
3

1
T
. The factor 2

3
is simply the mean value of M2 for the three ground states

with S = 1 and M = −1, 0, 1. For a = a1 the factor is 1
2
, corresponding to the mean

value of M2 for the four ground states with S = 1 and M = −1, 0, 1 and S = M = 0.

This transition is qualitatively the same for gapped infinite TGS chains, see section 4.4,

although the factor 2
3

would have to be replaced by the mean value of M2 of a continuum

of competing ground states.

In the two-trimer example the sets T s are shrinking when s increases. We generally

conjecture that Cs ⊃ Cs′ for s < s′ but could not prove this rigorously. For b = 0 and
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q00

q02

q10

q11

q11

q12

q22

-1.0 -0.5 0.5 1.0
a

-1.5

-1.0

-0.5

0.5

1.0

1.5

b

Figure 3. Representation of the set T s, s = 1, of points with coordinates (a, b)
such that the singlet product state Φ will be a ground state of the Hamiltonian (15)
corresponding to (16,17). The boundary of T 1 consists of pieces of 6 intersecting
smooth curves qij which have been calculated by computer-algebraic means. Note
that q11 contributes twice to the boundary. The indices i, j of qij refer to the quantum
numbers S ≡ i and S23 ≡ j of the corresponding competing states. The dotted line
defined by b = 0.4 a will be used for thermodynamic calculations, see figure 4.

a < 0 we find numerically that the critical value acrit which lies at the boundary of T s

has the form

acrit = − 1

s + 1
for s = 1, 2, 3, 4, 5 . (21)

This can be confirmed semi-analytically to hold for all s by calculating the competing

state Ψ which becomes an additional ground state if a assumes the value acrit. We defer

this calculation to the Appendix.
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0.02 0.04 0.06 0.08 0.10
T

0.2

0.4

0.6

0.8

T Χ

Figure 4. The product of temperature T and zero-field susceptibility χ as a function of
T for the coupling constants in (17) varying from a = 0.8 (lowermost curve) to a = 0.9
(uppermost curve) and b = 0.4 a. The units are chosen such that Tχ = 〈M2〉 becomes
dimensionless. At the value a1 = 0.869506904299778 (black curve) the line b = 0.4 a

crosses the boundary of the TGS domain and consequently there is a transition from
0 to the finite value 1/2 resp. 2/3 of limT→0 Tχ due to the finite magnetization of the
competing state with S = 1, see figure 3.

3.3. Chains

Next we consider examples of chains formed of trimers which are coupled in a balanced

way, i. e. satisfying (7)-(10), such that the singlet product state

Φ =
N⊗

i=1

[i0, i1, i2] (22)

becomes an eigenstate of the corresponding Hamiltonian. The coupling within the

trimers is always chosen as

Ji0,i1 = Ji1,i0 = Ji0,i2 = Ji2,i0 = Ji1,i2 = Ji2,i1 =
1

2
. (23)

The coupling constants between the trimers Jδ,ε ≡ Jiδ, (i+1)ε are chosen to depend linearly

on one or two parameters and we will investigate the convex domain of these parameters

for which Φ will be a ground state of the corresponding Hamiltonian. Throughout this

section we adopt periodic boundary conditions, i. e. N + 1 ≡ 1.

3.3.1. Chains of corner sharing tetrahedra

The choice of the inter-trimer interaction matrix

(Jδ,ε) =
1

2




b 0 0

b 0 0

b 0 0


 (24)
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-1.0 -0.5 0.5 1.0
a

-1.5

-1.0

-0.5

0.5

1.0

1.5
b

Figure 5. Representation of the set T s of points with coordinates (a, b) such that the
singlet product state Φ will be a ground state of the Hamiltonian (15) corresponding
to (16,17). The different curves defining the boundary of T s refer to the values of
s = 1, 2, 3, 4, 5 starting from the outermost curve. The curve for s = 1 has been
calculated analytically, see figure 3, the other curves for s = 2, 3, 4, 5 have been
determined numerically.

leads to a chain of corner sharing tetrahedra, see figure 6. Similar systems have been

widely considered theoretically as well as experimentally, see e. g. [14]. However, most

of these studies are focussed on spin-half systems. As it is typical for chains of corner

sharing tetrahedra the chains considered in this section have an additional symmetry,

namely that certain composite spin squares (in figure 6 these are S∼
2
23, S∼

2
56, etc. ) com-

mute with the Hamiltonian. Hence we have a simpler sawtooth chain composed of spins

and composite spins, see figure 6. While in general the composite spins may have spin

quantum number scomp = 0, . . . , 2s, in the singlet product ground state Φ the composite
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8
1

2
7

10

13

12

1

1

1 4 7 10 13

(2,3)

3 9

115

6

4
b

b

(8,9) (11,12)(5,6)

Figure 6. Example of a chain consisting of corner sharing tetrahedra (left) and an
equivalent effective chain of composite spins (right).

spins have the same spin quantum number s as the individual spins.

We have numerically determined the critical values bmin and bmax where Φ ceases

to be the unique ground state with energy E0 = −3N
2

s(s + 1). These critical values

depend on the number of spins 3N and the spin quantum number s. The results are

contained in table 1. While the dependence on the length of the chain is weak, again

an increase in the spin quantum number leads to a significant smaller parameter region

where Φ is the ground state. From the numerical data we can detect the competing

states which become ground states for b < bmin and b > bmax. The competing state for

negative, i.e. ferromagnetic, b is a ferrimagnetic state (the total spin of the chain S is

finite but less than 3Ns) and the composite spins have the spin quantum number s− 1.

Hence for s = 1 the spin quantum number of the composite spins in the competing state

is zero. Then the spins along the base line of the effective sawtooth chain build a simple

ferromagnetic s = 1 chain which is decoupled from the composite spins. The energy of

the competing state is Ẽ0 = N(−2 + b) and its total spin is S = N . As a result there is

a prominent transition for s = 1 at bmin = −1. For s > 1 and feromagnetic b there is

no simple competing state, since the effective chain is a mixed-spin sawtooth chain [19]

(e.g. a mixed spin-one spin-two sawtooth chain in case of s = 2).

The competing state for positive, i.e. antiferromagnetic, b is a state with the total

spin of the chain S = 0 and the composite spins have the spin quantum number s− 1.

Again for s = 1 the spin quantum number of the composite spins in the competing

state is zero, and, as a result, the spins along the base line of the sawtooth build an

antiferromagnetic s = 1 Haldane chain which is decoupled from the composite spins.

The energy of the competing state is E ′
0 = N(−2 + be0(N)). Setting E ′

0 = E0 yields

bmax = − 1
e0(N)

. For N → ∞ the energy of the antiferromagnetic chain is given by

e0(∞, 1) = −1.40148403897, see [20]. Hence we get for N → ∞ the critical value

bmax = −1/e0(∞, 1) = 0.713529353. This result together with bmin = −1 indicates

that the domain of TGS systems slightly expands with growing N . Hence we expect a

non-degenerate TGS domain even for N →∞ where Φ will be a gapped ground state as

we will prove in section 4.4. For s > 1 the effective chain is again a mixed-spin sawtooth
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Table 1. Critical values of the coupling constant b corresponding to the chains of
figure 6.

3N s bmin bmax
12 1 -1.0 0.667

12 2 -0.57 0.434

18 1 -1.0 0.696

24 1 -1.0 0.706

30 1 -1.0 0.710

chain and one can find values for bmax for short chains only.

Finally, we have numerically calculated the energy gap ∆N of the chain of N corner

sharing tetrahedra as a function of the coupling constant b for N = 2, 3, 4, 5, see figure

7. These results confirm the rigorous bound ∆N ≥ ∆2 for all N = 3, 4, . . ., which will

be derived in section 4.4, corollary 2 and shows that the TGS ground state is gapped

for trimer chains of this kind.

3.3.2. Spin tubes Several specific choices of the inter-trimer interaction matrix between

the trimers correspond to so-called three-leg or triangular spin tubes. Such spin tubes

have been widely considered in the literature, see e. g. [15].

Spin tube I: The choice of the inter-trimer interaction matrix

(Jδ,ε) =
1

2




a 0 0

0 −a −a

0 −a −a


 (25)

leads to a spin tube as shown figure 8. For the special kind of systems (25) it turns

out that the chains have an additional symmetry, namely that certain composite spin

squares (in figure 8 these are S∼
2
23, S∼

2
56, etc. ) commute with the Hamiltonian. Hence one

can consider a simpler ladder model composed of spins and composite spins, see figure

8. This ladder is frustrated, since the upper and the lower leg exchange bonds have

different sign. In the singlet product state Φ the composite spins on the lower leg have

the same spin quantum number s as the individual spins. Hence we have an effective

spin-s ladder, where the antiferromagnetically coupled rungs are in a local singlet state.

Note that a similar exact singlet product state was also found for a spin-half ladder with

one ferromagnetic leg and one antiferromagnetic leg [21].

We have numerically determined the critical values amin and amax where Φ ceases to

be the unique ground state with energy E0 = −3N
2

s(s+1). These critical values depend

on the number of spins 3N and the spin quantum number s. The results are contained
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Figure 7. The numerically calculated energy gap ∆N (b) of the chain of N corner
sharing tetrahedra as a function of the coupling constant b for N = 2, 3, 4, 5 and s = 1.
The lower-most blue curve corresponds to N = 2; the next curves correspond to N = 3
(red), N = 4 (black) and N = 5 (green). According to corollary 2 of section 4.4 we
have the rigorous bound ∆N ≥ ∆2 for all N = 3, 4, . . ., which is confirmed by these
examples. The curves ∆N (b) show only small variations for N = 3, 4, 5. They seem to
grow monotonically with N except for b > 0.64 where the N = 3 and the N = 4 curves
intersect. The parabolic form of the gap functions in the neighborhood of b = 0 can be
understood by virtue of 1st and 2nd order perturbation theory and considering local
S = 1 excitations for b = 0 satisfying ∆N (0) = 1. The 1st order corrections vanish
due to the balanced form of the inter-trimer Hamiltonian; the 2nd order contributions
have a negative sign since the local excitations can be treated like ground states in the
Hilbert space Φ⊥. Note that the perturbed local excitations need not be the competing
ground states; this explains the kinks in the gap functions.

a

−a

1

1 4 7 10

(11,12)(8,9)(5,6)(2,3)

8 11

1 4 7 10

3 6 129

52

a

1

−a

Figure 8. Example of a spin tube I (left) and an equivalent effective ladder of
composite spins (right).
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Table 2. Critical values of the coupling constant a corresponding to the chains of
figure 8.

3N s amin amax
12 1 -0.319 0.418

18 1 -0.330 0.419

12 2 -0.210 0.270

in table 2. In accordance with our general conjectures we find that the critical interval

[amin, amax] shrinks when passing from s = 1 to s = 2 and slightly expands from N = 12

to N = 18.

Based on the numerical data we have analyzed the competing states which become

ground states for a < amin and a > amax. In the competing state for both cases the

composite spins have the spin quantum number s + 1. As a result, the lower leg of the

effective model carrying larger spins determines the magnetic ordering of the systems.

While for positive a within both legs the spin-spin correlations are ferromagnetic in the

competing state, one has a competing state with antiferromagnetic spin-spin correlations

within both legs for negative a. Due to the antiferromagnetic rung coupling the total

spin of the system is S = 0 for a < amin, whereas the competing state is ferrimagnetic

with S = N for a > amax.

Spin tubes II: The choice of the inter-trimer interaction matrix

(Jδ,ε) =
1

2




0 d 0

0 d 0

b b + d b


 (26)

leads to another spin tube, see figure 9. For this special kind of coupling it turns out

that the chains have no additional symmetry (i.e. no composite spins are conserved), if

both parameters b and d are non-zero. Nevertheless, Φ will be the unique ground state

for a convex neighborhood of the point b = d = 0. Our numerical results are contained

in figure 10.

First, we notice that in the limits b = 0 or d = 0 some of the bonds are missing,

and the model can be transformed to the chain of corner-sharing tetrahedra. As a

trivial result the competing states and the corresponding transition points are the same

as discussed in section 3.3.1. Consequently, the competing state at (and also in the

vicinity of) b = 0, d = −1 and also d = 0, b = −1 is ferrimagnetic. In all the other areas

we find numerically that the competing state is a non-trivial singlet state. However, its

spin-spin correlations depend strongly on the position on the transition line shown in

figure 10.
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Figure 9. Example of a spin tube II.
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3N=12: s=1
3N=12: s=2
3N=18: s=1

Figure 10. Representation of the set of points T s with coordinates (b, d) such that Φ
will be a ground state of Hamiltonian corresponding to spin tube II shown in figure 9.

As for the previous examples, it is obvious from figure 10 that there is only a very

weak dependence on the size of the system. Moreover, we observe an inclusion T 2 ⊂ T 1,

which is compatible with the conjecture that the domain in the coordinate space (b, d)

where Φ will be a ground state shrinks with increasing spin quantum number s.

4. Rigorous results

4.1. Definitions

We recall the general definitions given in section 2. Analogous definitions hold for the

classical case: Here the spin observables scl
µ are unit vectors, H(J)cl is the Hamiltonian
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function, defined on the 3N -fold Cartesian product of unit spheres

P ≡
3N

X
µ=1

S2
(µ) , (27)

and Φcl ⊂ P is the set of all spin configurations satisfying

si0 + si1 + si2 =  for all i = 1, . . . , N . (28)

Note that Φcl as well as Φs are invariant under rotations. J is said to have the classical

TGS property iff the minimum of H(J) is assumed for all s ∈ Φcl. In this case we write

J ∈ Ccl
Φ = C∞Φ .

4.2. Necessary conditions for TGS systems

Whereas a complete characterization of Cs
Φ seems to be possible only for small N and

s or for the classical case s = ∞, one can prove a number of partial results, either

necessary or sufficient conditions for J ∈ Cs
Φ.

We have already mentioned the following result which gives a necessary condition

for J ∈ Cs
Φ:

Theorem 1 Φ is an eigenstate of H∼ (J) iff

Ji0,j0 + Ji1,j1 = Ji0,j1 + Ji1,j0 (29)

Ji0,j0 + Ji1,j2 = Ji0,j2 + Ji1,j0 (30)

Ji0,j0 + Ji2,j1 = Ji0,j1 + Ji2,j0 (31)

Ji0,j0 + Ji2,j2 = Ji0,j2 + Ji2,j0 (32)

for all i < j = 2, . . . , N . Moreover, let DS0 denote the space of all real 3×3-matrices with

vanishing row and column sums, and J̆ij the 3×3-matrix with entries Jiε,jδ, ε, δ = 0, 1, 2.

Then the above four equations (29) - (32) are equivalent to the statement that J̆ij is

orthogonal to the space DS0 w. r. t. the inner product 〈A,B〉 = Tr (AᵀB).

Proof: The second part of the theorem follows, since the equations (29)-(32) say that

J̆ij is orthogonal to the four matrices



1 −1 0

−1 1 0

0 0 0


 ,




1 0 −1

−1 0 1

0 0 0


 ,




1 −1 0

0 0 0

−1 1 0


 ,




1 0 −1

0 0 0

−1 0 1


(33)

which span DS0.

To prove the first part of the theorem we rewrite the Hamiltonian (27) in the form

H∼ (J) =
∑

µ6=ν

Jµν s∼µ · s∼µ (34)

=
∑

i 6=j

2∑

ε,δ=0

Jiε,jδ s∼iε · s∼jδ
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+ 2
N∑

i=1

(
Ji0,i1s∼i0 · s∼i1 + Ji0,i2s∼i0 · s∼i2 + Ji1,i2s∼i1 · s∼i2

)
(35)

≡
∑
i<j

H∼ ij
, (36)

where the distribution of the terms of the second sum in (35) to the terms H∼ ij
is

arbitrary. We have H∼ ij
= H∼ ij ⊗ 1∼

(ij) such that H∼ ij acts on Hij = Hi ⊗Hj and 1∼
(ij) on

the remaining factors. Recall that the trimerized state has the form

Φ =
N⊗

i=1

[i0, i1, i2] , (37)

where [i0, i1, i2] denotes the AF trimer ground state in Hi = Hi0 ⊗ Hi1 ⊗ Hi2. The

following lemma can be proven completely analogous to lemma 2 in [9]

Lemma 1 Φ is an eigenstate of H∼ (J) iff [i0, i1, i2]⊗ [j0, j1, j2] is an eigenstate of H∼ ij

for all i < j = 2, . . . N .

In view of this lemma we only need to consider the case of N = 2 trimers with

indices i < j in the remaining part of the proof. We set φ = [i0, i1, i2] and rewrite the

indices according to

(i0) ≡ 1, (i1) ≡ 2, (i2) ≡ 3, (j0) ≡ 4, (j1) ≡ 5, (j2) ≡ 6 . (38)

Since all summands in

0 = 〈φ|S2
123 φ〉 =

3∑
i=1

〈φ|(s∼
(i)
1 + s∼

(i)
2 + s∼

(i)
3 )2 φ〉 (39)

are non-negative, we conclude ||(s∼
(i)
1 + s∼

(i)
2 + s∼

(i)
3 ) φ||2 = 0, i. e. (s∼

(i)
1 + s∼

(i)
2 + s∼

(i)
3 ) φ = 0

for i = 1, 2, 3. Further, (s∼1 + s∼2 + s∼3) · s∼ν(φ⊗φ) = 0 for ν = 4, 5, 6. Hence, for arbitrary

Ψ ∈ Hij, the matrix D with entries

Dµν = 〈Ψ|s∼µ · s∼ν+3(φ⊗ φ)〉 µ, ν = 1, 2, 3, (40)

has vanishing row and column sums, i. e. D ∈ DS0. φ ⊗ φ is an eigenstate of H∼ (J)
iff H̆∼ (φ ⊗ φ) = 0 with H̆∼ =

∑3
µ,ν=1 J̆µνs∼µ · s∼ν+3. This in turn is equivalent to

〈Ψ|H̆∼ (φ ⊗ φ)〉 = 0 for all Ψ ∈ Hij, or 〈J̆ , D〉 =
∑3

µ,ν=1 J̆µνDµν = 0, i. e. J̆ is or-

thogonal to all matrices in DS0 which can be written in the form (40).

It remains to show that there exist enough Ψ ∈ Hij such that the matrices of the

form (40) constitute a basis of DS0. Note that for all s = 1, 2, 3, . . . φ has a non-

vanishing scalar product with the basis vector e = |1,−1, 0〉. Choose Ψ = e ⊗ e and

consider the corresponding matrix (40) D(1) with entries D
(1)
µν = 〈Ψ|s∼µ · s∼ν+3(φ⊗ φ)〉 =

〈e|s∼µφ〉〈e|s∼νφ〉. First, we conclude that 〈e|s∼
(1)
µ φ〉 = 〈e|s∼

(2)
µ φ〉 = 0 since s∼

(1)
µ and s∼

(2)
µ

change the spin quantum number S
(3)
123 which is 0 for e and φ. Second, s∼

(3)
3 e = 0,

hence D(1) = d1




1 −1 0

−1 1 0

0 0 0


 , d1 6= 0. The remaining matrices of the basis in (33)
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are similarly obtained by choosing Ψ = |1,−1, 0, 1, 0,−1〉, Ψ = |1, 0,−1, 1,−1, 0〉, and

Ψ = |1, 0,−1, 1, 0,−1〉. This concludes the proof of theorem 1.

Since (29)-(32) is a system of four linearly independent equations, the set of all real,

symmetric 3N × 3N -matrices satisfying (29)-(32) and Jµµ = 0 for all µ = 1, . . . , 3N will

be a linear space of dimension 3N + 5
(

N
2

)
= N

2
(5N+1), denoted by JΦ. The set CΦ of

TGS systems will form a closed convex cone embedded in the linear space JΦ, see [9].

If Φ is an eigenstate of H∼ (J) it is straightforward to calculate the corresponding

eigenvalues, since 〈Φ|s∼iδ · s∼jε|Φ〉 = 0 for i 6= j:

Corollary 1 If Φ is an eigenstate of H∼ (J) then

H∼ (J)Φ = −s(s + 1)

(
N∑

i=1

Ji0,i1 + Ji0,i2 + Ji1,i2

)
Φ . (41)

In the classical case we have similar but stronger results: The conditions (29)-(32)

can be strengthened to a uniform coupling condition:

Theorem 2 If J ∈ Ccl
Φ then the coupling constants do not depend on δ, ε, i. e.

Jiδ,iε ≡ Ji > 0 (42)

and

Jiδ,jε ≡ εij (43)

for all δ, ε = 0, 1, 2 and i < j = 2, . . . , N .

Consequently, we will denote by J∞
Φ ≡ J cl

Φ the linear space of all real, symmetric,

3N × 3N -matrices J with vanishing diagonals and satisfying (42) (except Ji > 0) and

(43).

Proof of theorem 2: The ground states of classical Heisenberg systems satisfy
∑

ν

Jµνsν = κµsµ, µ = 1, . . . , 3N , (44)

see eq. (16) in [22]. This equation results from the condition that the energy H =∑
µν Jµνsµ · sν assumes a minimum, subject to the constraints sµ · sµ = 1. Here

the κµ, µ = 1, . . . , 3N appear as the Lagrange parameters corresponding to these

constraints. We choose µ = (i, 0) and rewrite (44) in the form
∑

j( 6=i),ε

Ji0,jεsjε + Ji0,i1si1 + Ji0,i2si2 = κi0si0 . (45)

It is clear, by definition of classical TGS systems, that the contributions from different

trimers with index j 6= i in (45) can be rotated independently. These rotated contri-

butions cannot be compensated by variations of κi0 unless
∑

ε Ji0,jεsjε vanishes for all

j 6= i. Choosing s
(1)
j0 = −s

(1)
j1 = 1

2
and s

(1)
j2 = 0 yields Ji0,j1 = Ji0,j2. Similar arguments

apply to the other equations which say that the coupling between different trimers must

be uniform.

To prove uniform coupling within the trimers we reconsider (45) in the form Ji0,i1si1 +
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Ji0,i2si2 = κi0si0. The special choice s
(1)
i1 = −s

(1)
i2 = 1

2
and s

(1)
i0 = 0 again yields

Ji0,i1 = Ji0,i2 and analogously for the other equations.

The previous considerations show that for classical trimerized ground states the Hamil-

tonian assumes the value E = −3
∑N

i=1 Ji. If one of the Ji would be negative, say J1 < 0,

one could lower the energy by choosing s10 = s11 = s12. Hence all Ji ≥ 0 and the proof

is complete.

4.3. Systems close to unconnected trimers

Let
◦
J denote the matrix of an unconnected TGS system, i. e.

(
◦
J i0,i1,

◦
J i0,i2,

◦
J i1,i2) ∈

◦
Cs

Φi
for all i = 1, . . . , N where Φi denote the local trimerized ground

states. All other matrix elements
◦
J iδ,jε with i 6= j vanish. Of course,

◦
J∈

◦
Cs

Φ and hence

the next lowest energy eigenvalue E1 satisfies

E1 = E0 + ε ≡ 〈Φ|H(
◦
J)|Φ〉+ ε, ε > 0 . (46)

By continuity arguments, a small neighborhood of
◦
J still consists of TGS systems.

We want to derive a more quantitative result and consider an inter-trimer 3N × 3N

symmetric coupling matrix ∆ 6= 0 which has to be “small” in a certain sense. As a

measure of “smallness” of ∆ we will use |δmin| where δmin denotes the lowest eigenvalue

of the matrix ∆. Note that Tr ∆ = 0, hence δmin < 0 and the highest eigenvalue δmax

of ∆ satisfies 0 < δmax ≤ (3N − 1)|δmin|. It is clear that the size of the neighborhood of
◦
J depends on the energy gap of H(

◦
J) which explains the ε in the numerator of (47):

Proposition 1 Let
◦
J be an unconnected TGS system and J =

◦
J +∆, ∆ ∈ JΦ such that

|δmin| ≤ ε

3Ns(s + 1)
, (47)

where δmin denotes the lowest eigenvalue of ∆. Then J ∈ Cs
Φ.

Although the proof of proposition 1 is largely analogous to that of proposition 3 in [9],

we will give it here for sake of convenience. The s-dependence of the bound in (47)

supports the conjecture that the cones Cs
Φ shrink with increasing s.

Proof of proposition 1: Let Ψ be any normalized state satisfying Ψ ⊥ Φ. It follows that

〈Ψ|H(
◦
J)|Ψ〉 ≥ E1 . (48)

Further,

〈Ψ|H(∆)|Ψ〉 =
∑
µ,ν

∆µ,ν 〈Ψ|s∼µ · s∼ν |Ψ〉 ≡ Tr ∆S (49)

≥ δmin Tr S = δmin

3N∑
µ=1

〈Ψ|s∼2
µ|Ψ〉 = 3Nδmins(s + 1) (50)

≥ − ε , (51)
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where the last inequality follows from (47) and δmin < 0. It follows that

〈Ψ|H(J)|Ψ〉 = 〈Ψ|H(
◦
J)|Ψ〉+ 〈Ψ|H(∆)|Ψ〉 (52)

≥ E1 − ε = E0 , (53)

hence Φ will be a ground state of H(J). This concludes the proof of proposition 1.

An important special case of proposition 1 is the case of an unconnected

homogeneous TGS system, i. e.
◦
J i0,i1=

◦
J i0,i2=

◦
J i1,i2≡ λi > 0 for all i = 1, . . . , N . In

this case

ε = 2 λ ≡ 2 min{λi|i = 1, . . . , N} . (54)

One of the simplest potential TGS systems J(ε), see figure 11, shows an interesting

effect: For given s and sufficiently small ε it is a TGS system by virtue of proposition 1.

But if ε > 0 is fixed and s increases, it eventually looses the TGS property. Otherwise

we would get a contradiction since J(ε) /∈ Ccl
Φ by theorem 2 and the (normalized) ground

state energy must converge for s → ∞ towards its classical value as a consequence of

the Berezin/Lieb inequality [23]

(s + 1)2Ecl
min ≤ Emin ≤ s2Ecl

min . (55)

4.4. The TGS chain

A TGS chain consists of N copies of trimers such that the intra-trimer and inter-trimer

coupling is invariant under one-dimensional translations and Φ is a ground state with

energy Ẽ0(N). A first question is whether for a given coupling the system remains a

TGS chain for all N ∈ N, N ≥ 2. If this is the case, one may ask if the difference

∆N between the next-lowest eigenvalue Ẽ1(N) and Ẽ0(N) has a positive lower bound

independent of N . In this case one says that Φ is a gapped ground state. Here we ignore

further questions concerning the limit of ∆N for N → ∞ and confine ourselves to the

existence of a gap for TGS chains.

We will prove our result in a slightly more general context. Correspondingly, some

of the general definitions of the paper are abolished in the following theorem. We

consider a Hamiltonian H =
∑N

i=1 Hi where the Hi live in Hilbert spaces Hi ⊗ Hi+1

and the total Hamiltonian H in H =
⊗N

i=1 Hi. All Hilbert spaces Hi are copies of

one finite-dimensional Hilbert space. These and the following definitions are to be

understood in the sense of cyclic boundary conditions N + 1 ≡ N . Moreover, if T is

the unitary translation operator in H shifting the tensor factors cyclically and hence

satisfying TN =1, we will assume T Hi T
∗ = Hi+1 and hence [T, H] = 0.

Theorem 3 Let Φi ∈ Hi be normalized and Φi ⊗ Φi+1 be the unique ground state of

Hi with eigenvalue E0 and the next-lowest eigenvalue being E1 = E0 + δ, δ > 0. Then

Φ =
⊗N

i=1 Φi will be the unique ground state of H with eigenvalue Ẽ0 = N E0 and the

next-lowest eigenvalue satisfies Ẽ1 ≥ Ẽ0 + 2δ.
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Ε

1

1

Figure 11. This system cannot be a TGS system for fixed ε > 0 and arbitrary s, since
its classical limit is not TGS. The classical ground state corresponding to an energy
E0 = −3− ε2

9 is indicated by small arrows.

Proof: The first claim follows immediately by

HΦ =
N∑

i=1

HiΦ =
N∑

i=1

Φ1 ⊗ · · · ⊗Hi(Φi ⊗ Φi+1)⊗ · · ·ΦN

=
N∑

i=1

E0Φ = NE0Φ = Ẽ0Φ (56)

and NE0 being an obvious lower bound of H.

Let Ψ ∈ H be the eigenvector of H belonging to the next-lowest eigenvalues Ẽ1 ≥ Ẽ0.

We may assume that

Ψ ⊥ Φ and TΨ = eiαΨ, α = 2πk/N, k ∈ Z . (57)

Our aim is to show Ẽ1 ≥ Ẽ0 + 2δ. Let |µ〉, µ = 0, 1, 2, . . . denote the eigenbasis of

Hi in Hi ⊗ Hi+1 such that |0〉 = Φi ⊗ Φi+1. |µ,K〉 denotes a corresponding product

basis in H, where K stands for some multi-index of quantum numbers. Moreover, we

consider the reduced density operator W i
Ψ in Hi ⊗Hi+1 defined by the partial trace

〈µ|W i
Ψ|ν〉 =

∑
K

〈µ,K|Ψ〉〈Ψ|ν, K〉 . (58)
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Then we conclude

Ẽ1 = 〈Ψ|H|Ψ〉 =
N∑

i=1

〈Ψ|Hi|Ψ〉 (59)

=
N∑

i=1

Tr
(
Hi W

i
Ψ

)
(60)

=
∑
i,µ

Tr
(
Eµ|µ〉〈µ|W i

Ψ

)
(61)

=
∑
i,µ

Eµ〈µ|W i
Ψ|µ〉 (62)

=
∑

i

(
E0〈0|W i

Ψ|0〉+
∑

µ=1,2,...

Eµ〈µ|W i
Ψ|µ〉

)
(63)

≥
∑

i

(
E0〈0|W i

Ψ|0〉+ (E0 + δ)
∑

µ=1,2,...

〈µ|W i
Ψ|µ〉

)
. (64)

Lemma 2 〈0|W i
Ψ|0〉 ≤ 1− 2

N
. (65)

For the proof of the lemma we use an arbitrary orthonormal basis |n〉, n = 0, 1, 2, . . .

in Hi such that |0〉 = Φi and T operates as a cyclic shift operator in the corresponding

product basis in H. Hence 〈0|W i
Ψ|0〉 will be rewritten as 〈0, 0|W i

Ψ|0, 0〉. In this notation

we have Φ = |0, 0, . . . , 0〉. Due to translational symmetry the term (65) does not depend

on i, hence we may take i = 1 in what follows. We conclude

〈0, 0|W i
Ψ|0, 0〉 =

∑
K

|〈Ψ|0, 0, K〉|2 (66)

and

1 = TrW i
Ψ =

∑
n3,n4,...

|〈Ψ|0, 0, n3, n4, . . .〉|2 +
∑

n1,n2,...

|〈Ψ|n1, n2, . . .〉|2

≡ s0 + s1 . (67)

The first sum s0 in (67) runs through all sequences 0, 0, n3, n4, . . . excluding the value

n3 = n4 = . . . = 0, since 〈Ψ|Φ〉 = 0. Equivalently, we will say that it runs through

all states ψ = |0, 0, n3, n4, . . .〉 ∈ B0. The second sum s1 in (67) runs through all

sequences n1, n2, . . . except those with n1 = n2 = 0, or, equivalently, through all states

ψ = |n1, n2, . . .〉 ∈ B1. Thus the total sum in (67) runs through an orthonormal basis

B = B0 ∪ B1 of H′ ≡ {ψ ∈ H|〈ψ|Φ〉 = 0}.
We consider on B the equivalence relation ψ1 ∼ ψ2 ⇔ ψ1 = T a ψ2, a ∈ Z, and denote by

Λ = B/∼ the corresponding set of equivalence classes or “orbits”. Due to (57) all states

ψ in the same orbit λ yield the same value

tλ ≡ |〈Ψ|ψ〉|2 = |〈Ψ|T a ψ〉|2, a ∈ Z . (68)

For each orbit λ ∈ Λ let Nλ ≡ |λ| denote its length. For most orbits we have Nλ = N ,

but in general Nλ will be a divisor of N . For example, if N = 6 and |1, 2, 3, 1, 2, 3〉 ∈ λ
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then Nλ = 3. We define N
(k)
λ ≡ |λ ∩ Bk|, k = 0, 1, and obtain the following equations:

Nλ = N
(0)
λ + N

(1)
λ , (69)

s0 =
∑

λ∈Λ

tλ N
(0)
λ , (70)

s1 =
∑

λ∈Λ

tλ N
(1)
λ . (71)

If Nλ = N any basis vector ψ = |n1, n2, n3, n4, . . .〉 ∈ λ has exactly N mutually

orthogonal translations. Note that at least one nj, 1 ≤ j ≤ N must be non-zero since

ψ 6= Φ = |0, 0, . . . , 0〉. Hence at least two translations of ψ belong to B1, namely those

where j is shifted to 1 or 2. It follows that N
(1)
λ ≥ 2 and hence N

(0)
λ ≤ N−2. Similarly, in

the general case of 1 < Nλ ≤ N we also have N
(1)
λ ≥ 2 and hence N

(0)
λ ≤ Nλ−2 ≤ N−2.

In the case Nλ = 1, that is, ψ = |n, n, . . . , n〉, n > 0 we have N
(1)
λ = 1 and N

(0)
λ = 0.

This case has to be treated separately. We write λ ∈ Λ1 iff Nλ = 1 and λ ∈ Λ> iff

Nλ > 1 and conclude

s0 =
∑

λ∈Λ>

tλ N
(0)
λ ≤ (N − 2)

∑

λ∈Λ>

tλ , (72)

s1 =
∑

λ∈Λ1

tλ +
∑

λ∈Λ>

tλ N
(1)
λ ≥ 2

∑

λ∈Λ>

tλ , (73)

which for
∑

λ∈Λ>
tλ > 0 implies

s1

s0

≥ 2

N − 2
. (74)

If
∑

λ∈Λ>
tλ = 0 then s0 = 0 and (65) follows immediately. From (74) we infer

1

s0

=
s0 + s1

s0

= 1 +
s1

s0

≥ 1 +
2

N − 2
=

N

N − 2
(75)

and

s0 ≤ N − 2

N
= 1− 2

N
, (76)

s1 ≥ 2

N
, (77)

which concludes the proof of the lemma.

To complete the proof of theorem 3 we consider

1 = Tr W i
Ψ = 〈0|W i

Ψ|0〉+
∑

µ=1,2,...

〈µ|W i
Ψ|µ〉 = s0 + s1 (78)

and rewrite (64) as

Ẽ1 ≥
N∑

i=1

(E0 s0 + (E0 + δ) s1) =
N∑

i=1

(E0 + δ s1) (79)

= N E0 + N δ s1 ≥ NE0 + N δ
2

N
= Ẽ0 + 2 δ , (80)
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where we have used (77) which is equivalent to (65).

The generalization of theorem 3 (d = 1) to square (d = 2) and cubic (d = 3) lattices is

obvious but will not be considered here. We only note that in this case the energy gap

is bounded from below by 2d δ for d = 1, 2, 3.

In order to apply theorem 3 to trimer chains we will take

H = H(N) =
N∑

i=1

Hi ≡
N∑

i=1

2∑

δ,ε=0

(
1

2

◦
Jδε

(
s∼i,δ · s∼i,ε + s∼i+1,δ · s∼i+1,ε

)

+ J̆δεs∼i,δ · s∼i+1,ε

)
, (81)

where the J̆δε satisfy the conditions of theorem 1 and the Hilbert spaces Hi, i = 1, . . . , N

are chosen appropriately. Of course, Φi = [i0, i1, i2].

The 3× 3-matrix J̆ contains five independent real numbers and may thus be considered

as a vector of R5. We will fix the values of the intra-trimer coupling
◦
Jδε such that the

open convex set

T ≡ {J̆ |Hi has the unique ground state [i0, i1, i2]} ⊂ R5 (82)

is non-empty. Hence the energy gap of Hi, E1 − E0 = δ(J̆) varies over T but remains

positive there. Then theorem 3 shows that H(N) remains a TGS chain for all values

J̆ ∈ T and all N ∈ N. Moreover, the energy gap ∆N(J̆) = Ẽ1(N) − Ẽ0(N) satisfies

∆N(J̆) ≥ 2 δ(J̆), hence Φ is a gapped ground state in this case. Note that, due to the

cyclic boundary conditions, we have H(2) = 2H1, hence ∆2(J̆) = 2δ(J̆). We summarize:

Corollary 2 Let H(N) be the Hamiltonian of a trimer chain according to (81) and the

intra-trimer coupling
◦
J be chosen such that (82) is non-empty. Then H(N) will be a

TGS chain for all J̆ ∈ T and all N = 2, 3, . . . and its unique ground state Φ possesses

an energy gap satisfying ∆N(J̆) ≥ ∆2(J̆).

4.5. The classical case

In the classical case it is possible to completely characterize all TGS systems. Recall

that εij = εji denotes the uniform interaction strength between two trimers and Ji that

within the trimers according to theorem 2. For any J ∈ J cl
Φ we define an N ×N -matrix

G(J) with entries

Gii = Ji for all i = 1, . . . , N , (83)

Gij = εij for all i 6= j = 1, . . . , N . (84)

Then we have the following result:

Theorem 4 Let J ∈ J cl
Φ , then J ∈ Ccl

Φ iff G(J) is positive semi-definite.

Recall that G(J) ≥ 0 iff the N principal minors det(Gij)i,j=1,...,n ≥ 0 for n = 1, . . . , N .

Hence for classical spin systems the TGS property can be checked by testing N inequal-

ities.
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This result is also relevant for quantum spin systems, since we have the following:

Proposition 2 Ccl
Φ ⊂ Cs

Φ for all s = 1, 2, 3, . . ..

Again, the proofs of theorem 4 and proposition 2 are analogous to those given in sections

5.4 and 5.7 of [9].

Appendix: Another eigenstate for the trimer pair

We reconsider the system of two trimers in section 3.2 with the special coupling

J12 = J13 = J23 = J45 = J46 = J56 =
1

2
, (85)

J14 = − J26 = −J36 = −J25 = −J35 =
a

2
, a < 0 , (86)

and the remaining coupling constants vanishing. We want to calculate a competing

eigenstate Ψ which gives a lower energy than the trimerized state Φ for a < acrit.

As usual, we denote the composite spin of a subsystem by subscripts, e. g. S∼
2
123 =

(s∼1 + s∼2 + s∼3)
2 with eigenvalues S123(S123 + 1). Recall that it is possible to construct

orthonormal bases BT for the Hilbert space belonging to a spin system by means of

“coupling schemes” T . For example, the coupling scheme 1 → 12 → 123 yields the

common eigenbase of the composite spin squares S∼
2
12, S∼

2
123 and the 3-component of the

total spin S∼
(3)
123. It may happen that some state Ψ belongs to different BT ’s. In this

case Ψ will be a common eigenvector of all composite spin squares corresponding to the

different coupling schemes T . For example, the S = 0 ground state [1, 2, 3] of a uniform

AF trimer belongs to both coupling schemes 1 → 12 → 123 and 1 → 13 → 123 and

hence has the good quantum numbers S12 = S13 = s. (Otherwise it cannot couple with,

say, S3 = s to give S123 = 0). Note that a vector Ψ will belong to different BT ’s if it is

already uniquely determined by a proper subset of the quantum numbers corresponding

to some coupling scheme T1. If T2 is any other scheme containing the same quantum

numbers we have necessarily Ψ ∈ BT2 .

We will apply these considerations to the coupling scheme T1 = (2 → 23 → 123, 5 →
56 → 456 → 123456) and the quantum numbers S23 = S56 = s + 1, S123 = 1, S123456 =

S = 0. Obviously, it follows that S456 must have the value 1 and the vector Ψ is uniquely

determined by these quantum numbers. The same subsystems 23, 56, 123, 123456 also

occur in the coupling scheme T2 = (5 → 56, 2 → 23 → 123 → 1234 → 123456). Hence

Ψ ∈ BT1 ∩ BT2 and thus Ψ must have the quantum number S1234 = s + 1. Analogously,

S1456 = s + 1. It follows that Ψ is an eigenstate of the Heisenberg Hamiltonian

H∼ 1 =
(
S∼

2 − S∼
2
123 − S∼

2
456

)

−
(
S∼

2
1234 − S∼

2
123 − S∼

2
4

)
−

(
S∼

2
1456 − S∼

2
456 − S∼

2
1

)

= 2(−s∼1 · s∼4 + s∼2 · s∼5 + s∼2 · s∼6 + s∼3 · s∼5 + s∼3 · s∼6) (87)
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with eigenvalue E1 = −4(s + 1). If H∼ (a) denotes the Hamiltonian according to (16),

(17) and b = 0, we conclude that

H∼ (a) =
(
S∼

2
123 − 3s(s + 1) + S∼

2
456 − 3s(s + 1)

)
− aH∼ 1 , (88)

and hence 〈Ψ|H∼ (a)|Ψ〉 = 4a(s+1)+4−6s(s+1). This equals 〈Φ|H∼ (a)|Φ〉 = −6s(s+1)

for a = acrit = − 1
s+1

which confirms (21). Note that the argument is not completely

rigorous, since we could not exclude other competing ground states than Ψ for arbitrary

s. However, it is in agreement with our numerical data presented above.
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